669 The subclavian steal phenomenon: A common vascular disorder with rare neurologic deficits M. Hennerici, C. Ramm, and W. Rautenberg

674 How transient are transient ischemic attacks? D.E. Levy

677 The course of transient ischemic attacks L. Werdelin and M. Juhler

680 Alzheimer's disease and Parkinson's disease: Comparison of speech and language alterations J.L. Cummings, A. Danks, M. Menendez, M.A. Hill, and D.P. Benson

685 Peripheral neuropathic syndromes in giant cell (temporal) arteritis R.J. Caelli, J.R. Daubs, G.G. Hunder, and J.P. Whisnant

690 Intact recognition of facial expression, gender, and age in patients with impaired recognition of face identity D. Tanel, A.R. Damsio, and H. Damasio


702 Pathology in brainstem regions of individuals with primary dystonia R.M. Zeeig, J.C. Hertaren, W.R. Jantler, M.P. Cusumano, P.J. Whitehouse, and D.L. Price

707 Dystonia with marked diurnal variation associated with biotin deficiency J.K. Fink, N. Barton, W. Cohen, W. Lovenberg, R.S. Burns, and M. Hallett

712 Response to brief levodopa infusions in parkinsonian patients with and without motor fluctuations S.T. Ganchev, J.G. Nutt, and W. Woodward

717 Speech and language alterations in multi-infarct dementia A.L. Powell, J.L. Cummings, M.A. Hill, and D.P. Benson


724 Steroid-induced CT changes in patients with recurrent malignant glioma J.G. Cairncross, D.R. Macdonald, J.H.W. Pezman, and F.J. Ives


730 Resolving metabolic abnormalities in a case of pure alexia P.L. Silver, J.B. Chaluk, T.M. Bosley, M. Rosen, R. Dann, R.C. Sergott, A. Alasi, and M. Reivich

736 Eastern equine encephalitis in Massachusetts: A report of 16 cases, 1970-1984 M.M. Preziosi, E. O'Rourke, G.E. Grady, V.P. Berardi, and H.G. Markley

739 Peptide specificities of myelin basic protein-reactive human T-cell clones J.R. Richert, C.A. Reuben-Burnside, G.E. Deblaker, and M.W. Kies

743 Effect of vigabatrin on epilepsy in mentally retarded patients: A 7-month follow-up study R. Matlinainen, A. Pitkanen, T. Rautianen, E. Mervaala, H. Salmila, and P. Riekkinen

747 Relation of EEG alpha background to parietal lobe function in Alzheimer's disease as measured by positron emission tomography and psychometry P.H. Sheridan, S. Sato, N. Foster, G. Bruno, C. Cox, P. Fedio, and N.T. Chese


755 Massive carbamazepine overdose: Clinical and pharmacologic observations in five episodes D.F. Weaver, P. Campfield, and A. Fraser

759 The effect of epileptiform discharges on neuroendocrine release in epileptic patients with complex partial seizures M. Molina, A. Cruz, and A. Callebele


769 Huntington's disease mortality in the United States D.D. Lanska, L. Levine, M.J. Lanska, and B.S. Schoenberg

773 Etiology and prognosis of acute coma E.J. Austin, R.J. Wilkus, and W.T. Langstroth, Jr.

778 The magnetic field of epileptic spikes agrees with intracranial localizations in complex partial epilepsy W.W. Sutterlin, P.H. Crandall, L.D. Cohen, and D.S. Barth

786 Risk of dementia in relatives of patients with Alzheimer's disease F.J. Huf, J. Auerbach, A. Chabrier, and F. Bollier

Editorial

791 TIA: Are we need to return to the question, 'What is wrong with Mr. Jones?' L.R. Caplan

Brief Communications

794 Predominantly sensory neuropathy in patients with AIDS and AIDS-related complex D.R. Cornblath and J.C. McArthur

796 Dissociated weakness of sternocleidomastoid and trapezius muscles with lesions in the CNS R. Manon-Exuppiat and R.L. Ruff


800 Ischeim thalamic aphasia with pathologic confirmation M.H. Turzynski and C.K. Petitto

802 Localization of callosal auditory pathways: A CT case study M.P. Alexander and R.L. Warren

804 Vanishing cerebrovascular disease of pregnancy J.F. Brick


809 Double-blind comparison of primidone and phenobarbital in essential tremor E. Stapp, E. Perruccio, and S. Calzetti

810 Malignant hyperthermia in myotonia congenita T. Heiman-Patterson, C. Martino, H. Rosenberg, J. Fletcher, and A. Tahmoush

812 Sarcoïplasim reticulum adenosine triphosphatase deficien with probable autosomal dominant inheritance M.D. Danson, G. Karpasi, D. Chour, and P. Holland

816 Altered subsets of peripheral blood lymphocytes in patients with HTLV-1 associated myelopathy (HAM) Y. Itoyama, S. Minato, J. Kira, I. Goto, H. Sato, K. Okochi, and N. Yamamoto

818 Antibody production by blood lymphocytes in myasthenia gravis: Reduction in disease of long duration R.L. Kaufman and J. Oger

Historical Neurology

822 Deposition of facial paralysis on an African man C.B. Teiner and R.S. Et Mallash

Clinical/Scientific Notes

824 High-protein feeding in an infant with Pompe's disease D.N. Finegold and I. Bergman

Departments

8A Information for Authors

21A Newsletter

31A Calendar

824 Professional Notices

826 Correspondence

828 Book Reviews
Depiction of facial paralysis on an African mask

Christopher B. Steiner and Rif S. El-Mallakh, MD

In Europe, Sir Charles Bell (1774-1842) became identified with facial paralysis when he demonstrated, in 1829, that lesions of the seventh cranial nerve cause motor paralysis of the face. In addition, his name was associated with the study of facial expression in art, following his publication of Essays on the Anatomy of Expression in Painting. In this classic study, Bell appealed to artists to learn the structure of facial musculature and the function of the nerves in order to accurately portray the wide range of emotions displayed by the human face.

Facial paralysis is also a well-recognized phenomenon outside of Europe, recorded by local craftsmen and artists in many non-Western societies. In most of these cultures, the primary artistic medium is the facial mask. In Bali and Java, for example, masks representing symptoms of leprosy, frambesia, harelip, and facial paralysis are carved in honor of those afflicted with these diseases. In Sri Lanka, masks with facial deformity are worn during curing rituals. A mask of enormous dimensions represents the eighteen demons associated with various diseases, ranging from swollen throat to facial paralysis.

In Africa, the two most common diseases depicted on masks are gangosa and facial paralysis. The mask illustrated (figure) is distorted by paralysis of the left facial nerve. It was carved in Liberia, West Africa during the early years of this century. It was acquired by Dr. George W. Harley, a medical missionary in northeast Liberia from 1926 to 1960. Dr. Harley was a keen observer of Liberian arts and culture. As a physician, he was particularly interested in indigenous concepts of health and healing.

In one of his studies of African masks, Dr. Harley reports that a mask representing symptoms of facial paralysis was "venerated as a petty god, and sacrifices were made to it by individuals suffering from the disease, with prayers for recovery." He interpreted the mask as part of an indigenous system for curing facial paralysis. A person with facial paralysis, or any other disease, first sought treatment from simple, homemade herbal medicines that were "rationally" applied to the external malady. If these did not produce a cure, the patient would turn to a specialist of the medical guild (known as a zo), who had access to the most secretive "magical" remedies that could be directed against the sickness. According to Dr. Harley, the specific treatment for paralysis consisted of the following: "A knot of za di kpu (Loranthus micranthhus) is beaten up with a piece of ant hill of Termes phaloides and rubbed on the [inflicted area]. Or three or four pieces of the bark of kwéng (Parkia biglobosa) are beaten up with slimy mud—avoiding any sand, and rubbed all over the paralyzed part." The worship of the masks was the final
stage in the patient’s search for a cure.

More recently, research in a nearby region of Liberia revealed that this type of mask is neither a representation of a particular sick person nor an agent to effect a cure, but an agent of “moral education.” The mask is worn during village festivals. A man wearing a carved wooden mask, a headdress, and an elaborate costume made of dyed cloth and raffia fibers, runs and dances through the village square. When a mask representing facial paralysis is brought out to perform, it is said that “one is not supposed to laugh at the sight of such a masquerade however much the comic gestures or facial distortions may provoke one to do so. When these masquerades appear, they continually scratch themselves with great vigor, limping about and appearing to collapse. Whoever laughs at them must pay an immediate fine, or else suffer an infliction of the same sort of facial disorder.” The masked performance is therefore a lesson for the community: a demonstration that teaches the young not to laugh at human deformity.

The contrasting interpretations of the function of the mask may be due to variations between the two regions of Liberia where the research was conducted, or to changes in the function of these types of masks through time.

References